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Statistical tools of uncertainty quantification can be used to assess the information content of
measured observables with respect to present-day theoretical models; to estimate model errors and
thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and
to provide meaningful input to applications and planned measurements. To showcase new oppor-
tunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in
nuclear density functional theory using Bayesian inference methods. By considering the recent mass
measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate
how the Bayesian analysis and a direct least-squares optimization, combined with high-performance
computing, can be used to assess the information content of the new data with respect to a model
based on the Skyrme energy density functional approach. Employing the posterior probability distri-
bution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate
theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fis-
sion barriers. Overall, we find that the new mass measurements do not impose a constraint that is
strong enough to lead to significant changes in the model parameters. The example discussed in this
study sets the stage for quantifying and maximizing the impact of new measurements with respect
to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory
cycle in the scientific method.

PACS numbers: 21.10.Dr, 21.60.Jz, 24.75.+i, 02.30.Zz

Introduction – Our understanding of heavy, complex
nuclei lies at the heart of many basic science questions,
such as chemical evolution, neutron star structure, syn-
thesis of superheavy elements, mechanism of nuclear fis-
sion, or search for the new Standard Model [1]; this
knowledge is also crucial for societal applications [2]. In
all those cases, reliable theoretical estimates of nuclear
masses, low-lying excitations, electromagnetic strength,
and nuclear reaction rates form essential inputs when di-
rect experimental information is not available.

For tackling complex nuclei theoretically, nuclear den-
sity functional theory (DFT) is the microscopic tool of
choice [3]. In recent years, largely because of algorith-
mic developments and high-performance computing [4],
DFT has taken great strides as a predictive theory that
describes the properties of nuclei across the nuclear land-
scape [5–7]. No consensus exists, however, on the form of
the nuclear effective interaction or energy density func-
tional (EDF), resulting in large systematic uncertainties.
Moreover, nuclear EDFs are characterized by coupling
constants that must be adjusted to experiment [3, 8–
10]. The systematic calculation of uncertainties related
to the determination of model parameters, as well as the
propagation of these uncertainties in model prediction,
has thus become a necessity [9, 11–15] (see also [16]).
Furthermore, as we enter the era of experiments with

exotic nuclei at extremes of isospin, theory will play an
increasingly important role in identifying scientific pri-
orities of planned experimental campaigns. Conversely,
as experiments extend current knowledge by providing
information about the uncharted regions of the nuclear
landscape, new methodologies become critical for evalu-
ating the impact of these measurements on theory.

From the viewpoint of statistics, determining the pa-
rameters of a model given a set of experimental data mea-
surements is an inverse problem [17]. Bayesian inference
methods [18] are one of the most popular and powerful
statistical approaches to inverse problems, with diverse
applications in physics [19, 20] (for recent nuclear physics
applications, see, e.g., Refs. [21–27]). In the Bayesian set-
ting, model parameters are treated as random variables,
and their uncertainty is characterized by their joint prob-
ability distribution. Various techniques, often based on
Monte Carlo simulations, have been developed to recon-
struct this probability distribution from model prediction
of experimental data.
Objectives – In this work, we present the advanced ap-

plication of Bayesian inference to global nuclear prop-
erties using nuclear DFT. In particular, we use the
Bayesian framework to quantify and propagate DFT sta-
tistical model uncertainties and to assess the information
content of new data with respect to model developments.
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To this end, we study the impact of the recently reported
mass measurements from the Canadian Penning Trap
(CPT) mass spectrometer at Argonne National Labora-
tory [28–30] on the Bayesian posterior probability distri-
bution as well as the direct determination of EDF pa-
rameters. The CPT dataset is unique in that it probes
neutron-rich nuclei around 132Sn; hence, it can help im-
prove our knowledge of isovector EDF properties and re-
duce extrapolation uncertainties into the region of the
astrophysical r-process. From the resulting posterior dis-
tribution, we assess model uncertainties on observables,
including the position of the two-neutron dripline and
fission barrier heights of actinide nuclei.

Method – Our theoretical framework is nuclear density
functional theory with Skyrme EDFs. Pairing is mod-
eled with a density-dependent pairing force and treated
at the Hartree-Fock-Bogoliubov (HFB) level by using an
approximate particle number projection with the Lipkin-
Nogami method. We choose the unedf1 parameteriza-
tion of the Skyrme functional as our reference model [31].
This EDF is characterized by twelve parameters that
were optimized on a set of binding energies for spherical
and deformed nuclei, charge radii, odd-even mass differ-
ences, and excitation energies of selected fission isomers
(see Refs. [31–33] for details of the model and the unedf
EDF family).

The quality of the functional is measured by a com-
posite χ2 function,

χ2(x) =
1

nd − nx

nT∑

t=1

nt∑

j=1

(
ytj(x) − dtj

σt

)2

, (1)

where x denotes the set of model parameters, nx = 12
is the number of model parameters, nT the number of
different data types used in the fit (nT = 4 in our case),
nt is the number of data points used for each data type,
nd =

∑
t nt is the total number of data points, and dtj

and ytj(x) are the experimental value and correspond-
ing model prediction, respectively, for the jth data point
of type t. For the unedf1 functional, where nd = 115,
computing the χ2 requires about 5 minutes of CPU time
with over 800 cores in a multithreaded implementation of
the DFT solver HFBTHO [34]. Monte Carlo simulations
used to construct the posterior distribution may typically
involve tens of thousands of such χ2 evaluations; even
with current supercomputers, this cost is too high. We
thus replace the DFT model ytj(x) with a Gaussian pro-
cess (GP) response surface, allowing Monte Carlo–based
Bayesian computation.

The GP response surface is estimated within the en-
compassing Bayesian formulation [35] by using an ensem-
ble of DFT runs for each of the nd experimental nuclei
used in (1). The ensemble is defined by a 200×nx matrix
of input settings distributed according to a space-filling
Latin hypercube sample [36] over an nx-dimensional hy-
perrectangle centered on the unedf1 values. For each

parameter, widths are determined according to the stan-
dard deviations reported in Ref. [31], which were ob-
tained through a covariance analysis that assumed a lin-
ear approximation. The GP is controlled by a scaling
parameter, as well as correlation parameters regulating
the smoothness of the response surface in each of the nx
parameter directions.

The full posterior density includes a likelihood term
for the experimental data based on Eq. (1) and the en-
semble of training runs for the GP, the uniform prior for
the model parameters x, and priors for the parameters
that control the GP-based response surface; see Ref. [37]
for a detailed description of the posterior density. We
construct dependent samples from this distribution us-
ing Markov chain Monte Carlo as detailed in [35], from
which summaries such as 90% probability intervals and
posterior means can be constructed.
Results – Through Bayesian model calibration, we first

obtained the posterior probability distribution for the
unedf1 parameter set, which provides a sense of how
the set of fit observables of unedf1 constrains the pa-
rameters. In Fig. 1, we show the univariate and bivari-
ate marginal estimates of the posterior distribution. The
blue-outlined regions give the 95% posterior probability
region for the original unedf1 parameters. We notice
that the Bayesian approach is in agreement with esti-
mates of uncertainties based on covariance analysis re-
ported in Ref. [31]. In particular, most distributions are
centered on the unedf1 values, and the standard devia-
tions extracted from the distribution are consistent with
the 95% probability intervals.

In a second step, we used our Bayesian formulation to
evaluate the information content of the new mass mea-
surements [28–30]. To this end, we modified the χ2 of
Eq. (1) to include 17 new masses of neutron-rich even-
even nuclei measured at the CPT; the experimental val-
ues are listed in the supplemental material [38]. The
GP response surface was again produced by using an
augmented ensemble of 200 (nd + 17) DFT model eval-
uations. The green-outlined regions in Fig. 1 represent
the same 95% posterior probability regions obtained with
the inclusion of the Argonne mass measurements. With
the exception of a few ill-constrained parameters (e.g.,
nuclear incompressibility and isovector surface coupling
constant), the shift in the posterior is small for each pa-
rameter. This suggests a weak impact of the additional
data on our model.

For comparison, we performed a direct reoptimization,
independent of the GP response surface, of the unedf1
functional that includes the new CPT masses [39]. We re-
fer to the reoptimized EDF parameter set as unedf1CPT;
see supplemental material for parameter values [38]. The
two parameterizations are similar. The largest relative
difference, weighted by the standard deviations reported
in Ref. [31], is 0.6σ for the isovector surface coupling con-

stant Cρ∆ρ1 and surface symmetry energy. These quanti-
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FIG. 1. (Color online) Univariate and bivariate marginal es-
timates of the posterior distribution for the 12-dimensional
DFT parameter vector of the unedf1 parameterization. The
blue lines enclose an estimated 95% region for the poste-
rior distribution found when only the original unedf1 data
are accounted for; the green-outlined regions represent the
same region for the posterior distribution found when the
new CPT mass measurements are included. The ranges
of parameter variations are 0.155 ≤ ρc ≤ 0.165 (fm−3);
−16.0 ≤ ENM/A ≤ −15.5 (MeV); 200 ≤ KNM ≤ 240
(MeV); 28 ≤ aNM

sym ≤ 30 (MeV); 20 ≤ LNM
sym ≤ 60 (MeV);

0.8 ≤ 1/M∗s ≤ 1.2; −60 ≤ Cρ∆ρ0 ≤ −40 (MeV fm5); −200 ≤
Cρ∆ρ1 ≤ −90 (MeV fm5); −200 ≤ V n0 ≤ −150 (MeV fm3);

−220 ≤ V p0 ≤ −180 (MeV fm3); −80 ≤ Cρ∇J0 ≤ −60

(MeV fm5); and −80 ≤ Cρ∇J1 ≤ 0 (MeV fm5).

TABLE I. Root-mean-square deviations for each of the types
of data included in the unedf optimization. Masses and en-
ergies are in MeV, radii in fm.

Class unedf1 unedf1CPT

masses (def) 0.721 0.578
masses (sph) 1.461 1.545
radii 0.022 0.022
odd-even staggering (n) 0.023 0.024
odd-even staggering (p) 0.079 0.081
fission isomer energies 0.190 0.316
masses (CPT) 1.064 0.479

ties have been difficult to constrain with the dataset used
in the unedf protocol. Of interest, then, is the fact that
the unedf1CPT value of Cρ∆ρ1 is close to that of unedf2,
which was also optimized to effective single-particle en-
ergies [33], known to be sensitive probes of surface prop-
erties. Since the new dataset including CPT masses is
more skewed toward neutron-rich nuclei, it may supply
additional information about the shell structure above
doubly magic 132Sn through a better determination of

isovector coupling constants.
Table I displays the root-mean-square deviation be-

tween calculated and measured values for each type of
data included in the optimization. We note that the in-
clusion of the CPT mass measurements shifts the opti-
mization priority, so that the new masses and deformed
masses are reproduced more accurately, while predic-
tions for fission isomers and spherical masses deteriorate
slightly. The results in Table I are indicative of a small,
additional constraint on the isovector coupling constants
in unedf1CPT.
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FIG. 2. (Color online) Estimated theoretical error bars for
the masses of the even-even nuclei measured in Refs. [28–30],
using the posterior for unedf1. Dark blue bands represent
the 90% confidence bands obtained from the posterior; larger,
light blue bands also account for model error; black bars show
mass residuals.

Equipped with the posterior distribution for the EDF
parameters, we now turn to the propagation of statis-
tical uncertainties for model predictions. We take the
posterior distribution for the EDF parameters obtained
by conditioning only on the unedf1 measurements and
propagate the distribution through the augmented GP-
based emulator, producing prediction intervals for the
new CPT mass measurements. These estimates are gen-
uine holdout predictions since the new mass data were not
used in determining the posterior distribution. Figure 2
shows 90% prediction intervals (centered on the mean
mass value of unedf1) for the new CPT masses. The
dark blue band is the 90% interval for the uncertainty in
the EDF model parameters; the light blue band also in-
cludes uncertainty due to model error. The model error
uncertainty was estimated from the difference between
the posterior mean estimate and the actual mass mea-
surements in the unedf1 dataset. Separate estimates
were made for spherical and deformed nuclei. These es-
timated model-error standard deviations were assumed
to be appropriate for the new CPT mass measurements,
producing this additional uncertainty. We observe that
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the experimentally measured values (black bars in Fig. 2)
are generally within the 90% prediction interval. The es-
timated uncertainty for the calculated masses is approxi-
mately ±2 MeV, and slightly larger for the four spherical
nuclei (the first four nuclei in the figure). This uncer-
tainty is relatively large and in excellent agreement with
the r.m.s. deviation for masses of even-even nuclei across
the entire nuclear landscape, which is 1.9 MeV for un-
edf1.
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FIG. 3. (Color online) Comparison between the two-neutron
dripline predictions made with unedf1 (solid line) and those
made with unedf1CPT (dashed line). The 90% probability
spread about the unedf1 predictions is shown in grey.

We now evaluate how the calculated model uncertain-
ties impact predictions for important physical observ-
ables. We first look at the position of the two-neutron
dripline, which is especially important for our under-
standing of nucleosynthesis in the r-process [40]. For a
given element characterized by its proton number Z, the
two-neutron dripline is defined as the point where the
two-neutron separation energy becomes negative. We
have performed an ensemble of calculations of nuclear
binding energies for all even-even neutron-rich elements
with 20 ≤ Z ≤ 100 over the Latin hypercube sample
design of EDF parameter inputs, allowing yet another
GP-based emulator to be constructed for these binding
energies.

Once the emulator is constructed, we propagate the
posterior distribution of the model parameters (condi-
tioning on either the unedf1 or unedf1CPT datasets),
producing uncertainty in the estimated dripline. With
this Monte Carlo sample, we can estimate the posterior
mode and 90% interval for the dripline for each value of
Z. We explored the axial quadrupole potential energy
surface of each nucleus to allow for deformed solutions.
The results are presented in Fig. 3. We observe that
the inclusion of 17 new masses of neutron-rich nuclei in
the optimization protocol did not impact the position of

the dripline, since results with unedf1 and unedf1CPT

are practically indistinguishable. The predicted dripline
is consistent with the results of large-scale DFT surveys
[6, 7]. Apart from the few closed-shell, waiting-point nu-
clei, the uncertainty on the position of the dripline is
on the order of 15 to 20 nucleons. This is comparable
to statistical and systematic uncertainties obtained by
comparing predictions made with different Skyrme func-
tionals [6].
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FIG. 4. (Color online) Comparison between the fission bar-
rier predictions for 240Pu made with unedf1 (solid line) and
those made with unedf1CPT (dashed line), together with the
90% confidence interval (shaded grey area). The potential
energy surface was obtained by following the lowest-energy
static fission pathway in a four-dimensional collective space
of axial and triaxial quadrupole, axial octupole, and axial
hexadecapole mass moments.

Another important application area of nuclear DFT
is fission theory. In Fig. 4, we show the potential en-
ergy curve of 240Pu. This nucleus is representative of the
actinide region and is often used as a theoretical bench-
mark. Again, the results of unedf1 and unedf1CPT are
close. The large theoretical uncertainty in the predicted
static fission barrier is worth noting; similar results were
obtained in Ref. [41] in the context of fission properties
for r-process nuclei. Since a 1 MeV shift in the fission bar-
rier translates into many orders of magnitude difference
in the spontaneous fission half life, such results highlight
the urgent need for better constraining the deformation
properties of current EDFs.

Conclusions – We have presented a comprehensive ap-
plication of Bayesian inference techniques to the calcu-
lation and propagation of theoretical statistical uncer-
tainties in nuclear density functional theory. By using
the recent, unique dataset of mass measurements from
the CPT at Argonne National Laboratory, we showcase
how the statistical tools of uncertainty quantification and
high-performance computing can be used to assess the
information content of new data with respect to current
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models. Such analyses will become increasingly relevant
for enhancing the feedback in the “observation-theory-
prediction-experiment”- cycle of the scientific method at
the eve of next-generation radioactive ion beam facilities
and exascale computing.

In the particular case studied in this work, we found
that the impact of the new neutron-rich nuclei mass
data on our DFT model is minor. The coupling con-
stants of the earlier functional unedf1 and of the new
functional unedf1CPT, informed by the new data, are
fairly close; hence, their predictions for the two-neutron
dripline and fission barrier in 240Pu are practically iden-
tical. Although the major theoretical statistical uncer-
tainty in developments of the nuclear EDF comes from
the poorly constrained isovector terms and the new data
on neutron-rich nuclei are generally expected to reduce
this uncertainty, the lack of a significant constraint from
the new masses suggests that both the amount of new
neutron-rich isotope data and the range of neutron excess
probed, are not sufficiently large to impact our model ap-
preciably. Moreover, because of their poor precision with
respect to the existing data (see Table I), even the cur-
rent, best-calibrated EDFs are not sensitive and flexible
enough to fully take advantage of the new experimental
information.

By propagating theoretical errors, we found large
model uncertainties in the predictions of the two-neutron
dripline and the fission barrier in 240Pu. In this respect,
we concur with the conclusions of Ref. [30] that existing
mass models are insufficient for accurate r-process simu-
lations. Clearly, accurate measurements for nuclei with
even larger neutron excess, closer to the r-process path,
are still needed in order to better inform theory.

We note that the uncertainties discussed in this work
are estimated statistically, reflecting parameter uncer-
tainty and model misfit. The misfit error is most likely
due to our lack of knowledge of the form of the nuclear
EDF itself, and additional measurements will never re-
duce this source of uncertainty. Adding physics that is
missing in the current implementations of nuclear DFT
is a major challenge for the field. A distinct and comple-
mentary challenge is to develop tools that deliver uncer-
tainty quantification for theoretical studies as well as for
the assessment of new experimental data. The present
work represents a step in this direction.
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Experimental datasets

The experimental dataset of unedf1 contains nd =
115 data points [1, 2], which can be broken down into
nT = 4 data types: n1 = 75 nuclear masses (28 spherical
and 47 deformed), n2 = 28 r.m.s. proton radii, n3 = 8
odd-even mass staggering differences (4 for neutrons and
4 for protons), and n4 = 4 excitation energies of fis-
sion isomers. Compared with unedf1, the unedf1CPT

dataset contains 17 new masses of neutron-rich even-even
nuclei measured by using the Canadian Penning Trap
mass spectrometer and CARIBU facility [3–5] at Argonne
National Laboratory. These new data are listed in Ta-
ble I.

TABLE I. Experimental binding energies (rounded to the
nearest 0.1 MeV) of the 17 even-even nuclei measured in
Refs. [3–5] included in our analysis.

Nucleus B (MeV) Ref.

130Sn -1090.2 [5]
132Sn -1102.7 [5]
134Sn -1108.8 [5]
134Te -1123.3 [4]
136Te -1131.3 [4]
138Te -1138.7 [5]
140Te -1145.7 [5]
138Xe -1151.4 [4]
140Xe -1160.6 [4]
142Ba -1180.0 [3]
144Ba -1190.1 [3]
146Ba -1199.4 [3]
146Ce -1208.5 [3]
148Ce -1219.4 [3]
150Ce -1230.0 [3]
158Sm -1291.8 [4]
160Sm -1302.9 [4]

UNEDF coupling constants

Table II lists the coupling constants of the unedf0 [1],
unedf1 [2], and unedf1CPT (this work) energy density
functionals.

TABLE II. Coupling constants of the unedf0, unedf1,
and unedf1CPT energy density functionals. ρc is in fm−3;
ENM/A, KNM, aNM

sym, and LNM
sym are in MeV; 1/M∗s is dimen-

sionless; Cρ∆ρt and Cρ∇Jt are in MeV fm5; and V n0 and V p0 are
in MeV fm3.

Name unedf0 unedf1 unedf1CPT

ρc 0.1605 0.1587 0.1589
ENM/A -16.0559 -15.8000 -15.8000
KNM 230.0000 220.0000 220.0000
aNM

sym 30.5429 28.9362 29.3449
LNM

sym 45.0804 40.0149 40.7144
1/M∗s 0.9000 0.9924 0.9686

Cρ∆ρ0 -55.2606 -45.1289 -43.9801

Cρ∆ρ1 -55.6226 -145.3178 -114.2915
V n0 -170.3740 -186.0655 -182.2372
V p0 -199.2020 -206.5796 -203.9807

Cρ∇J0 -79.5308 -74.0264 -72.4172

Cρ∇J1 45.6302 -35.6584 -32.9206
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